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Current fault simulation techniques such as concurrent, deductive,
and parallel fault simulation are not powerful enough for today's very
large integrated circuit designs. More powerful fault simulation tech-
niques are needed to prevent a crisis in integrated circuit testing. A
new simulation technique based on the well-known concurrent and deduc-
tive techniques is presented, which uses a hierarchical representation
of the circuit design and unlike the traditional implementations of
these techniques does not expand the circuit to a single, lowest level,
description. The simulation technique is shown to be decoupled from the
fault model of the circuit through the use of fault libraries. These
libraries are based on the principle that any detectabie fault will
cause an erroneous output value for some input vector. The implementa-
tion of this technique is described and preliminary performance results
are given. The advantages and disadvantages of this technique are dis-

cussed and possible enhancements are described.
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1. INTRODUCTION

Simulation is the technique of approximating the response of a sys-
tem to a stimulus by evaluating a model of the system. The accuracy of
the model determines how closely the simulation approximates the actual
system and greater accuracy is usually more expensive in terms of com-
puter time and space. When the computation time becomes unacceptably
long, or the space requirements exceed the capabilities of the computer,
simulation becomes impractical. The alternatives to this situation are:
use a larger, faster computer; reduce the computational requirements by
simplifying the models; break the system into smaller pieces and simu-

late each piece separately; or use more efficient algorithms.

The first approach, using larger, faster computers, is practical in
some instances, but many simulation algorithms show second order effects
(or worse) [1,2] in time and space so a machine four times "bigger"
would be required to simulate a system only twice as large. Clearly
this is an expensive solution, and many problems exist which cannot be

simulated on any machine in existence today.

The second approach, simplifying the models, has been successful,
but it involves trading accuracy for speed and space. A typical example
of this method is using logic simulation instead of circuit simulation
to simulate large, integrated circuit designs. Circuit simulators can

handle on the order of 100 transistors [3], while logic simulation can
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handle several thousand transistor circuits. The tradeoff is reduced
accuracy of signal values, and in some designs may yield values that are
wrong. The user of a simulator must be aware of the limitations imposed
by simulation models and stay well within these limitations to avoid
incorrect results. Since very few physical systems can be modelled per-
fectly, this is a fundamental problem in simulation, and the user should
always check the results of a simulation for validity. The accuracy
versus speed and space problem has led to the development of multi-mode
simulation where circuit simulation (most expensive) is used for criti-
cal timing paths, logic simulation (less expensive) is used for other
circuitry directly interacting with the critical path, and functional

simulation (least expensive) for the remaining parts of the system [4].

The third approach, partitioning the circuit, can be difficult and
tedious for the user [(5,6,7]. In cases where the simulation algorithm
is at least 0(n2), partitioning may dramatically increase throughput by
reducing the number of primitives the algorithm deals with at any one
time. That is, a large N2 is much greater than the sum of its squared
factors. Even for a linear algorithm, if the circuit is so large that
frequent page faults seriously degrade the performance of the simulator,
partitioning can improve throughput by reducing the page fault rate, but
the total amount of work required tc evalvate the circuit primitives
remains unchanged. Manual partitioni g is a poor means of fitting the

circuit to the simulator, because it is tedious and error prone.
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The final approach, using more efficient algorithms, can be viewed

as the evolution of a particular style of simulation. For example, the
earliest fault simulations were done with logic simulators and the
faults were injected by manually altering the system being tested [8].
Fault simulation quickly evolved to specialized simulators that automat-
ically injected the faults, and then to more efficient algorithms for
perfo. - ing this simulation. This evolution led to the parallel simula-
tor which provided tremendous speedup by simulating several closely
related machines at the same time. Parallel simulation is still a popu-
lar simulation technique. From parallel simulation, deductive [9] anc¢
concurrent [10] simulation were the next major developments in fault
simulation algorithms. These techniques are fundamentally different
from parallel simulation because they determine all detectable faults in
the system, for a particular input vector, in one pass instead of many
passes. These techniques have been the subject of current research and
development in fault simulation and are becoming quite popular in indus-
try. Experience has shown that these techniques are more efficient on
large <ystems than parallel simulation, but they require much more
memory [11]. Since the price of computer memory is decreasing rapidly,
concurrent and deductive fault simulation techniques are steadlily becom-

ing more attractive.

1.1. Teraminology

A failure is a defect which if present in the circuit may, under

the appropriate conditions, cause the circuit to behave incorrectly.
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The description of the effect of this failure at some level of abstrac- —
tion is called a fault. The incorrect behavior of the fault is called
an error. The term fault is often used interchangeably in the litera-
ture where error is really meant. Errors are said to propagate (through -
a module) when the error presented at the input to the module causes an
incorrect response (error) at the outputs of the module. If no
incorrect response is generated, then the error is said to be absorbed
or blocked. If, for the input stimulus and a particular fault, no error
is produced at the primary outputs, then that fault is undetectable
under the current input. In the case of sequential circuits, the
current and all previous inputs must be considered. If the fault
remains undetectable for all possible input stimuli, then the fault is

an undetectable fault.

There are two intrinsic tasks which a fault simulator must perform: 13

fault activation and fault propagation. Activation is the process of

deciding which internal faults can affect the outputs of a module, given
; the input stimulus, and propagation is the process of deciding if the
b
L_, faults present at the inputs of a module can be detected at the outputs
[ ]
. of the module. The activation process used by the author is based on a
[
\ table lookup technique and is described in Chapter 3.
f
LO 1.2. Research Goals
b
We believe that the use of hierarchy wherever possible is important
; to improve simulator performance in several ways. The hierarchical
[
L representation of a system is more compact, which helps increase the
b.
P,
(o
>. -
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size of the system that can be simulated. This hierarchical representa- _ @
tion also allows the user to control the complexity of the simulation by Y
controlling the complexity of the system description [12]. The \
hierarchical description of a system also affords different perspectives ; i
of the system which are difficult to obtain from a flat system descrip- ﬂ;
tion. These perspectives are invaluable for tools that require '
knowledge of the system structure, such as fault diagnosis and test gen-
eration tools [13]. There appears to be a trend toward hierarchical
representations of systems for computer-aided design (CAD) tools because
using hierarchy is a natural technique for reducing the apparent com-
plexity of a system by providing abstractions of each level of the sys-
tem [5,14,15]. In order to fully utilize the power of hierarchical

representation the tools must use the hierarchy internally, rather than

flattening a hierarchical description, and perform all reporting to the

user in terms of the hierarchy. For these compelling reasons we believe

@

a it is important to orient our work towards hierarchical representations.

The goals of this research were to develop an alternative fault
simulation technique that was based on hierarchical system evaluation.
We also wanted our technique to incorporate the advantageous features of
both concurrent and deductive simulation, but without many of the disad-
vantages. The hybrid technique which is detailed in Chapter 3 is
inherently hierarchical and uses an unordered list-based propagation
technique. This avoids the ordered list operations and deduction equa-
tions of the deductive technique and also avoids (when possible) the

replication of machines which penalizes the concurrent technique.
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Most fault simulators are tied to a particular technology through ,
the fault model embedded in the simulator. Changing the fault model
usually requires modifying the simulator, a task few users want to per-
form. Our final goal then was to increase the usefulness of our fault -
simulation technique by decoupling the fault model from the simulator,
so that a change in fault models requires changing data files, not modi-

fying programs.
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2. COMPARISON OF FAULT SIMULATION TECHNIQUES

An informal comparison of simulation techniques quickly shows why
concurrent simulation is more efficient than paraliel simulation. It
also shows why parallel simulation performs better for smaller circuits,
and concurrent simulation for larger circuits. For any type of fault
simulator, each fault must be examined and its consequences applied to
the circuit. Since the circuit is represented as a collection of simu-
lator primitives, the effect of these faults must be determined from
evaluating the primitives, and similarly the effect of the faults on
other parts of the system must be determined by applying the result of

the faults to these other elements to determine their response.

If the various simulation techniques can be modelled by equations
derived from characteristics of the simulation algorithms, then these
equations can be used to predict simulator performance. In this chapter
simple performance models of parallel, deductive, and concurrent fault
simulation are derived from their, algorithms. These models are used to
help explain the performance characteristics of the various techniques.
Finally, the models are used to hypothesize approaches to improving
fault simulator performance. To simplify the models, we neglect any
one-time overhead such as initialization or output which is relatively
independent of the circuit size or composition and assume measured aver-

ages for terms that vary with circuit topology or input stimulus. The
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cost factor derived here is called the primitive fault product or PFP

and is a function of the following parameters:

total number of possible faults for the circuit
average number of faults for each primitive (parallel)
average number of faults for each primitive (deductive)
average number of faults for each primitive (concurrent)
word width of the target computer

number of bits used to represent a logical value

number of circuit elements (simulator primitives)

(w/b) = 1 (faulty machines evaluated in parallel)
activity factor in event-driven simulation (0<a<<1)
fault collapsing factor (0<b<1)

cost per evaluation (epu seconds)

3 -

QT N NPT KL ™y T

Since changes in input may not affect many of the signals within a sys-
tem being simulated, event-driven simulation improves performance by
evaluating only the signals that change (the activity). Typically, this
activity ‘affects only 5-20% of the system, so 80% or more of the evalua-
tion performed by a compiled simulator is avoided. The activity factor
a wccounts for this improvement. The fault collapsing factor b accounts
for the reduction in the number of faults the simulator deals with due
to fault folding, fault collapsing, and fault dominance. Evaluations
for the cost factor ¢ are the number of then most meaningful similator
events for each technique. For parallel simulation, an evaluation is
the processing of one primitive for a group of machines. In deductive
and concurrent simulation, an evaluation is the processing of one fault

or list of equivalent faults.
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2.1. Parallel Fault Simulation

In parallel fault simulation, word instructions are used to evalu-
ate the same device in several different faulty machines at the same
time. The virtual data structure, shown in Figure 1, demonstrates how
this is accomplished. The columns represent the nodes of the circuit
and the rows represent the different faulty machines. Row 0 represents
the fault-free circuit. Because the nodes are aligned with the words,
and the faulty machines across the words, a computer instruction, per-
forming a logical operation on two words, simultaneously performs the
evaluation of that operation on the same nodes for several different
machines. This parallelism significantly speeds up the fault simula-
tion. The speedup factor depends on how many machines can be packed

into one word. A more detailed explanation of the parallel fault simu-

NODES
ABCDEFG. ..
GOOD

MACHINE*?
F 2
A 3
U 4
L 5
T 6
S 7
8

Figure 1. Virtual Data Structure for Parallel Simulation
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lation algorithm can be found in [8]. -

The virtual data structure previously described can also be used to
develop a measure of the computation performed during a fault simula-
tion. The evaluation of all faulty machines requires either F/K or
F/K+1 passes. Sinée each primitive must be evaluated at least ornce per
pass, in a compiled simulation (more if the circuit contains feedback
loops), the total number of evaluations performed is P#(F/K). Substi-
tuting fP for F shows the second order nature of the parallel fault
simulation. There are several techniques for increasing the speed of
parallel simula’ion, sSuch as fault folding and activity directed
(event-driven) simulation, but none of these techniques changes the

order of the algorithm. The expanded form of this equation then is

PFP = abeP(fP)/((w/b)=1)

2.2. Deductive Fault Simulation

Deductive fault simulation, developed by Armstrong [9] simulates

only the good machine and computes the effect of the faults with fault

list equations. These equations, defined here as deduction equations,
perform the operations of set intersection, union, and complement on

fault lists and the super fault list. The super fault list is the list

LY ). g )

of all possible faults and the complement of a fault list is defined as
all faults not present in the list, or the super fault list minus the

list to be complemented. The set intersection and union computations

become slow when they involve large sets because these operations




1

|l perform insertions and deletions on ordered sets. The complement opera- -
tion is especially costly because it involves copying (with deletions)

the super fault list.

f: The deduction equations are data dependent and must be derived dur-

ing simulation. For a gate with all inputs at non-controlling values (0

v e e .
OO Y.
e

for an OR and 1 for an AND) the deduction equation is derived by the 1
formula: The output list is the union of all the input lists and the '!

output stuck at the controlling value. j

list all inpu at controlling
l lists value

4

i output union of output stuck "‘."J
{ = vt oy

If some of the inputs are at controlling values (1 for an OR and O for ]

I an AND) then the equation becomes more complicated. The output list is .‘.

N

the output stuck at the non-controlling value and the intersection of

the complement of the union of non-controlling input lists and the union :fd

| of controlling input lists.

output stuck at union of

joutput ( ‘ union of
{ = non-controlling; non-controlling} N }controlling‘

list

value ’ input lists input lists
More details of this technique can be found in Baker [10]. The deduc-

' ) tive technique is not as versatile as other fault simulation techniques
because of 1its list-based algorithm, but recent and advances in string
processors may dramatically change this situation very soon [16]. More

recent work has generalized the deductive simulation technique [17]. A

comparison of several fault simulation techniques is presented in Leven-

del [18] which is particularly interesting because it considers extended
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versions of each technique.

In deductive simulation the number of faults evaluated at each
primitive is the sum of the number of faults present at the inputs of
the primitive, the output fault, and the total number of faults F if any
lists are complemented. The number of faults present on the inputs is
much less than the total number of faults so the frequency of list com-
plement operations strongly influences the average number of faults pro-
cessed at each primitive f'. The cost for performing each pass of a

deductive simulation is:

PFP = abePf!

2.3. Concurrent Fault Simulation

The concurrent fault simulation algorithm was developed by Ulrich
and Baker [10] and is characterized by scheduling the good machine and
all faulty machines in the same event queue. More recent work has been
reported which emphasizes improving the performance aspects of con-
current simulation [19]. In this technique simulation begins by apply-
ing a vector to the primary inputs and evaluating the first available
primitive for the good machine. As each primitive is evaluated, the
faults in that primitive that are activated by the current stimulus
spawn new machines. These machines differ from the good machine by the
effect of the fault. There is no difference in the processing of the
faulty machines and the good machine except that only the good machine

triggers the spawning of new machines. Spawning more faulty machines
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from faulty machines would effect a multiple fault evaluation. As each
faulty machine is spawned, the current state of the good machine is
duplicated, and the new machine is added to the evaluation queue.
Clearly, duplicating the entire state of the good machine for each
faulty machine produces maximum flexibility, but is very expensive in

terms of memory space.

Concurrent fault simulation is inherently an event-driven algo-
rithm. Therefore the PFP 1is dependent on the input stimulus, which
determines what faults are activated, propagated, or absorbed. The
total number of evaluations is the summation over the primitives, of all
the faults propagated to each primitive, plus all the faults activated
in that primitive, plus the good machine evaluation. This metrie,
because of its senéitivity to the iInput, is difficult.to use, instead,
use the average number of faults evaluated per primitive f", a measur-
able quantity. Since f" s generally large, any technique which
decreases the average number of faults evaluated per primitive will sig-
nificantly improve the performance of the simulator. A dynamic fault
collapsing technique, detailed in Chapter 3, decreases this average to

the minimum possible value.

The PFP then is the sum of good machine evaluations P, faulty

machine evaluations Pf", and the appropriate constants for activity and

cost:

PFP = acP(f"+1)
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This equation appears linear, but f" is dependent on the number of - !

primitives, the input, and circuit topology. 1

2.4. Characteristics of the Simulation Models

Although these models are quite simple they highlight the salient
parameters that affect simulator performance. The models show that the
performance of all the techniques is a function of the product of primi-
tives and faults, which implies that performance can be improved by

reducing this product. The number of faults can be reduced by parti-

tioning the fault set or static fault collapsing, and the number of

primitives can be reduced by redefining the system in terms of more

comprehensive primitives. There 1is a caveat in the last approach
because more complex primitives encompass mére faults so the average 'f é
number of faults per primitive increases with primitive complexity and :
the primitive~fault product may not change very much. However, fault -
reduction techniques are more successful with the more complicated ) !

"primitives™, so the total number of faults and therefore the

P R

primitive-fault product can be reduced.

2.5. Concurrent Versus Deductive Simulation

The cost factor for parallel simulation is much smaller than the

P cost per evaluation 1in concurrent simulation because the parallel
evaluation is much less complicated, involves less overhead manipulating
. data structures, and is amortized over several different machines. For

¢ small numbers of faults and primitives, parallel simulation is faster,
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but for large numbers of faults and primitives concurrent simulation is
faster. The crossover point seems to be around 1000 simulator primi-

tives [11].

In this section the two most viable techniques for fault simulation
are compared in sufficient detail to show the advantages and disadvan-
tages of each. The discussion is intended to motivate the development
of a hybrid algorithm which incorporates the advantages of both con-

current and deductive simulation.

The main disadvantages of deductive fault simulation are that it
requires storage of long, ordered fault lists at each node, and the pro-
cessing of these ordered lists is expensive, particularly the complement
operation. Since the complement operation occurs very ‘frequently, it
severely degrades simulator performance. This technique also suffers a
large memory penalty because the super fault list, which is frequently
scanned, must be explicitly stored in memory. Since only the good
machine is evaluated, and the faulty machines are deduced, all the
faulty machines implicitly have the same timing characteristics as the
géod machine, so representation of timing faults is very cumbersome.
One final difficulty with deductive simulation is that the deduction
equations are data dependent and must be derived for each stimulus. The
derivation of these equations is simple for traditional gates, but
becomes much more complicated (and time consuming) for more complex
modules. Expansion of the fault algebra aggravates all of these prob-

lems.
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?; In comparison, the disadvantages of concurrent simulation are that

E‘- it copies the entire machine state each time a new fault is activated.

kiﬁ Copying the entire machine state is expensive in terms of both memory

iii and time. Since the different machines are completely independent, con- -

»

current simulation can represent timing faults as easily as level or

Pad it o

i "

logical faults.
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4
.‘ 3. HIERARCHICAL FAULT SIMULATION SYSTEM - @

The simulation system developed to achieve the research goals, con-

R YR

cists of three major parts: two preprocessors for the fault library and

circuit source, and an evaluator which performs the fault simulation.

e
P
’L‘.',.

The preprocessors, constructed with LEX [20] , a program for generating

lexical analyzers, and YACC [21] , a program for generating parsers,
, parse their respective source files and produce data structures for the _
| evaluator. The internal data structures are constructed as the source “‘
file is read and the result is a compact, linked list data structure
l (directed acyclic graph), with links along all the paths the simulator. _,
@

is expected to need. The resulting data structure is then transformed

into a relocatable structure by making all pointers relative to the base

of the data structure. This structure is then written to a file for

later use by the evaluator.

The data atructures were parsed in separate programs for several

reasons. First, under UNIX', it is difficult to call two YACC-generated

parsers from the same program because YACC gives all parsers the same

name. One of the parsers could be renamed by editing the YACC output

file, but this approach adds another step in the edit-compile-test cycle .

-

and is undesirable from a maintainability standpoint. Second, there is )

no need to reprocess both the circuit and the fault library if only one )

1

L] . @
UNIX is a Trademark of Bell Laboratories. 1

I DR
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of the two has changed. For small ecircuits or fault libraries, this - i
extra overhead is negligible, but for larger systems the overhead may be

significant. Third, for stylistic and maintenance purposes, it is much X

d

easier to cope with three specialized programs than with one large — q

- NP ARt
PR .ll .

conglomeration. In the following sections each part cf the simulator is

q

discussed in detail.

3.1. Fault Library

This section focuses on the fault library segment of the simulator.

—

g

The intent is to separate the core evaluation routinec o. the simulator

i
A, PN, N

from the details of the fault model. This separation allows the simula-

——

e ams

tor to be used for different technologies without modification, and
allows easy expansion of the simulator primitive set. An algorithm for »

combining primitives to form new primitives has been developed which

will be presented in future research.

The fault library represents the precomputation and orderly storage

of fault syndromes for all primitive elements. These syndromes may be
computed for any fault with a logically modelled effect at the output of

the primitive. This means either the wrong logical value, or the

ALY . J ARSI A

correct value at the wrong time. This allows a more comprehensive fault

P S

model than the traditional stuck-at fault model which has been proven

inadequate [22,23,24]. Precomputation of the fault syndromes decouples

..

the simulator from the fault model in the sense that the fault model is

M S A Sy r
Y . -

embedded in the primitive library instead of in the simulator evaluation

routines. Thus different technologies with different fault models can
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be incorporated in the simulation system by building a primitive library
of fault syndromes which correspond to that technology. This method is,
of course, sensitive to the completeness of the fault library entries

for the primitives.

The preprocessor for the fault library parses the source for the
fault library and produces a relocatable linked list data structure for
the evaluator. The input is structured in a simple LR(0) grammar con-
sisting of about eight keywords, four separators, alphanumeric symbols,
and four-valued signal vectors. The case of alphabetic characters is
significant, and the parser ignores blanks, tabs, new lines, and " /%
comments #/", A sample entry for a three input AND gate is shown in
Figure 2. Each entry in the fault library begins with the keyword PRIM-
ITIVE, followed by an equal sign, then the name of the primitive. This

name is followed by INPUT, OUTPUT, and FAULTLIST sections. The input

PRIMITIVE=AND3
INPUT 3 : 1=4,2=B,3=C
OUTPUT 4 : U4=FAND

FAULTLIST 7 :

A1,FAND1 011>
B1,FAND1 101>
C1,FAND? 110>
A0,B0,CO,FANDO  111<
FAND? 027>
FAND1 202>
FAND1 270>

Figure 2. Fault Library Source for a 3 Input AND Gate

. "1..-".
e @

t
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and output sections have similar structure, the keyword INPUT or OUTPUT s
followed by a number, then a list of signal names and their correspond-
ing positions in the I/0 vector. These assignments have the form "sig-
nal number = signal name", and are separated by commas. The number fol- -
lowing the keyword is the number of signals in the following list and is '
used by the parser to allocate storage in advance for the signal list.

F‘ The keyword FAULTLIST (if present) is followed by the number of vectors

following the keyword for the same purpose.

E The vectors following the keyword FAULTLIST are composed of tuples,

A4 W

i a list of faults covered by the vector and a signal vector composed of

1 logic values. In the current implementation there are five 1logic

values: ]
U z
5 =
4 Y
[ 1 logic one :
: 0 logic zero R
> error, should be zero but is one under fault 3
< error, should be one but is zero under fault >
? don't care Ty
% unknown 9
R
]
The exact representation of the logic values is immaterial; these sym- :
)
bols were chosen for ease of parsing, and they are intended for internal
use only. The list of faults included in the tuple has no meaning to
the evaluator. It is completely up to the user to establish any desired ) ]
]
fault naming convention. The set of faults which can produce an error ]
on a particular line for the current input is indistinguishable [25,26],
so the evaluator does not care whether the fault name list associated 4

with a vector represents one or many faults. The simulator treats each

¥
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list of fault names uniquely even if there exist other strings with the — O
same lexical value (sequence of symbols). This uniqueness is required )
since two faults may have identical names; the uniqueness is established ]
by their location in the circuit hierarchy. In fact, the contents of ~ﬂi
these name lists are never examined by the simulator. 511
i

3.2. Scald Circuit Description - .4.
1

The circuit definition language is a subset of the Structured

Computer-Aided Logic Design language (SCALD) [27]. This language was

chosen because it is a hierarchical circuit description language and
previous work at the University of Illinois implemented SCALD output

from the graphics editor DRAW [28]. 1In SCALD, the circuit is hierarchi-

cally defired in terms of macromodules which are defined in terms of

other macromodules and/or simulator primitives. Macromodules and primi-
[ tives may have multiple inputs and outputs. Figure 3 shows the SCALD

r_] definition of an Exclusive Or.
!

' MNAME=XOR; .
PARAMETER=za, b,c; - S
INV(LOC=XOR1) (A=a,FINV=NUL%00001); :
INV(LOC=XOR2) (A=b, FINV=NUL%00002) ;
NAND2( LOC=XOR3) (A=a, B=NUL$00002, FNAND=NUL$00003) ;
NAND2(LOC=XORY4 ) (A=b, B=NULL00001 ,FNAND=NUL$00004) ;
NAND2(LOC=XORS) (A=NUL%$00003,B=NUL%00004 ,FNAND=c);
END; -

.

P . . R Y
B _JRARRY. )
P PR L e

”)

Figure 3. SCALD Definition of an Exclusive Or Module
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The module name follows the keyword MNAME and is terminated with a
semicolon. The next 1line beginning with the keyword PARAMETER
enumerates the input-output lines; order is unimportant. Most simula-
tors are based on gate level primitives with only one output, this is
not adequate since many technologies permit structures which have no
gate equivalent. The multiple input/multiple output capability of SCALD
is much more powerful in this respect. The parameters (signals) are
followed by calls to other modules, either macromodules or primitives.
These calls consist of the module name followed by a unique location and
then the list of signal bindings. The location distinguishes between
several calls to the same module and the signal bindings provide
correspondences between the signal names in the called module and the
signal names in the calling module. The module calls are followed by

the keyword END to signify the end of the current module definition.

This hierarchical description is compact because each module is
defined only once but can be called many times. This representation is
much more compact than expanding the circuit to the lowest level (simu-
lator primitives). This compactness provides better locality, which is
important for good cache miss and page fault ratios, since the circuit

description is constantly scanned by the evaluator.

3.3. The Evaluator

The evaluator is the core of the fault simulation system. This
program readq the data structures produced by the two preprocessors and

relocates each according to its base address. Then some additional
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linking is performed to link SCALD calls to primitives to the appropri-
ate fault library definition of those primitives, and to link the primi-
tives to a functional evaluation routines. Once this process is com-

plete, the evaluator is ready to apply vectors to the circuit.

The evaluation begins by applying the input vector to the highest
level scald module, which must encompass the entire circuit. The
evaluator reorders the vector and proceeds to call itself recursively
through macromodule calls until a simulator primitive is encountered.
The result of this evaluation is then applied to the next higher module
and another call at that level is given to the evaluator. This process
continues until all the pending activity at the current level is com-
pleted, then the evaluator returns the result to the next higher level.

This process implements a depth-first evaluation of the circuit.

The evaluation process consists of two major portions, macromodule
evaluation and primitive evaluation. The macromodule evaluation occurs

first and is the simplest so it will be discussed first.

3.4. Macromodule Evaluation

Macromodule evaluation consists of two parts, choosing the next
available module call to evaluate and reordering the signal vector for
that call. If a scheduling algorithm is used, the order of evaluation
may not correspond to the static ordering in the module definition,
since some signals may be undefined (internal nodes), and some modules
may be evaluated more than once in sequential circuits. When all the

modules have been evaluated and there is no more internal signal
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activity, the macromodule evaluation process terminates by returning to
the calling level, with updated external signal values. These values
may be scheduled for application to the circuit at some time in the

future.

3.5. Primitive Evaluation

Primitive evaluation is somewhat more complicated, but also a two
step process, fault activation in the current module and error propaga-

tion from the inputs to the outputs of the current module.

3.5.1. Fault Injection

The fault injection process is characterized by table lookup for
matches in the fault 1library with the current input vector. These
matches are calculated with a matching function that resolves disparate
values for the same signal into matches or differences. This function
is responsible for matching with don't cares and unknowns. If one or
more vectors are matched from the fault library, the corresbonding fault
lists are attached, along with the complete path to the current module,
to all outputs which evidence the errors. A fault (list) may appear on

more than one output, which complicates the task of fault propagation.

3.5.2. Fault Propagation

Once fault activation is complete, the input signals are scanned
for attached fault lists. If the signals contain fault 1lists, these
lists are decomposed into sets characterized by unique error syndromes

at the inputs of the current module. The decomposition is done with a
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double hashing process: first, the error is hashed according to its name
and location, then according to the input(s) on wﬁich it occurs. The
result of this hashing is an inverted list where all of the fault lists
with the same error syndrome are collapsed into a single fault list.
Each of the unique error syndromes is then evaluated with the functional
model of the primitive and the results compared to the good module out-
puts. If the outputs differ, then the errors creating the current syn-
drome propagate on all outputs which differ from the good machine. Pro-
pagation is effected by attaching the 1list of fault 1lists to the
appropriate outputs. If the syndrome creates an output which is identi-
cal to the good machine, then the errors are marked as potentially
absorbed (they may be propagated elsewhere) for later processing. Each
syndrome is evaluated in turn until all syndromes are exhausted. In the
worst case, the number of syndromes is equal to the input range of the
module, but in practice it should be only a small fraction. The most
significant feature of this process is that the maximum possible col-
lapsing is performed on error syndromes because they are dynamically

collapsed.

. ERA . . LR - . - [N - .
. < M P AL AT W UIP LT LA 0 T U O GNP P ST T VT W i W VT G U G AR GO Tl WA WU WA W SO

. C e :
N .




Ot DA YA T

3. FAULT SIMULATION EXAMPLES

In this chapter the fault simulation algorithm is further clarified
through examples. The first example, an Exclusive Or circuit, demon-
strates the detalls of the algorithm. The second example, a fast multi-
plier, shows how the simulator behaves with realistic circuits and indi-

cates how well the simulator performs.

§.1.1. Exclusive Or

In this section an example of the simulation algorithm is presented
using an Exclusive Or circuit. This circuit, shown in Figure 4, 1is a
multiple input, single output module, composed of gate-level primitives.
Although using a gate-level description does not fully utilize the capa-
bilities of the simulator, it is easy to follow.

Q

XOR1 XOR3

XORS

R | XOR2 XOR 4

Figure 4. Exclusive Or Circuit for Simulation Example
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The notation used in this example is simple, the gates are referred "~:’!
to by location, i.e., XOR1, and the circuit nodes are labelled, i.e., T. |
Fault names are not required to be unique, and as seen in this example,
a unique location is required to fully qualify fault names. Lists of :” iﬂ
indistinguishable faults are enclosed in parentheses with the unique :

location beginning the list, and lists of these fault lists are enclosed

in square brackets to denote a fault list. The simulator does not store
the lists or manipulate the data in exactly this form; the notation is
intended for clarity. Some details of the simulation have been left
out, but this example illustrates the essence of the simulation algo-

rithm.

Let the input vector take the value 10 on inputs QR. The scheduler

determines that only modules (in this case primitives) XOR1 and XOR2

- have completely known inputs; all other modules have some unknown

inputs. The scheduler chooses to evaluate module XOR1 first because it
ﬁl is the first module in the list of evaluable modules. Evaluating XOR1
for the input Q=1 determines that the output S=0; this constitutes the
good machine evaluation. Next the fault library entry for this type of
mcdule (inverter) is searched for matches with the input vector. This
is the activation phase of fault simulation. One match is found and
‘ this match 1is attached to the output vector for module XOR1. This

attachment is denoted by the signal name and value followed by the list

of fault names: 1
- S=0 [(XOR1,A0,FINV1)] )

There are no faults attached to the input so the fault propagation phase
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is skipped. The evaluation is completed by scheduling the charge in S
to occur at the appropriate time in the future. There is only one
module XOR2 left on the evaluation list, so XCR2 is evaluated next. The
input R=0 produces the output T=1 and the fault library search yields
one match,
T=1 [(XOR2,A1,FINVO)]

Again there are no faults attached to the input so the fault propagation
phase 1is skipped, and the output T is scheduled to change at the
appropriate time in the future. 1In this example the changes in S and T

are assumed to occur at the same time.

Since the evaluation list is empty, the simulator clock advances to
the next signal event, where the changes in S and T are applied. The
scheduler checks all modules affected by these changes and finds that
modules XOR3 and XOR4 may now be evaluated. The good machine evaluation
of XOR3 determines that for the input vector QT=11, the output U=0.
Searching the fault 1library entry for a 2 input NAND produces one
match,

U=0 [(XOR3,A0,B0,FNAND1)]
The input Q does not have any attached faults, but the input T does, so
these faults must be checked for propagation through the module. Since
there is only one input with attached faults, no fault collapsing is
possible so this step is skipped. Next, the (only) error syndrome is
synthesized QT'=10 and applied to the module, which determines that
U'=1. Since U' and U differ propagation occurs, and the fault 1list

associated with this fault syndrome is attached to the output U. Tre
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resulting fault list attached to U is then
U=0 [(XOR3,A0,BO,FNAND1)(XOR2,A1,FINVO)]
As before the evaluation ends by scheduling the output change at the

appropriate time in the future.

The evaluation of XORM occurs in a similar fashion. The input vec-
tor RSz00 produces an output of V=1, and there is one match in the fault
library,

V=1 [ (XORY,FNANDO) ]
Again, only one input contains a fault list, so no collapsing is done,
and the one error syndrome, RS'=01, produces an output V'=z1. Since V =
V', the fault list associated with the error syndrome is not propagated,
but marked as "potentially" absorbed. Fanout elsewhere in the circuit
could have allowed other paths for the faults to propagate, so the final
determination is delayed until all circuit activity has ceased. In this
case it is easy to see that there is no fanout for this list so the

fault list is completely absorbed.

Again, the evaluation queue is empty so the simulation clock is
advanced to the next signal event where the values for U and V are
changed. These signals affect XORS so this module is scheduled for
evaluation. The good machine evaluation of XORS for the input vector
UV=01 produces the output W=1, and the activation phase finds one match
in the fault library,

W=1 [(XCRS,A1,FNANDO)]

Both inputs U and V have attached fault lists so fault collapsing is

L JUSRANRN
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applied to the input vector. The fault lists are disjoint so no col-

lapsing occurs. The two lists of faults produce two error syndromes, ‘ 4

UV'=11 from [ (XOR3,A0,BO,FNAND1)] attached to U
UV"=00 from [(XORY4,FNANDO)] attached to V

Since th2 simulator operates under the single fault assumption, there
are no other syndromes possible. Evaluation of the first syndrome
UV'=11 produces an output of W'=0 which differs from W, so the associ-

ated fault list is attached to W. The second syndrome UV"=00 produces

bttt I adeind

an output of W"=z1 which is the same as W so the associated fault 1list

does not propagate, and this list is flagged as potentially absorbed.
The final fault list attached to W is then

W=1 [(XORS,A1,FNANDO) (XOR3,A0,B0,FNAND1) (XOR2,A1,FINVO)]
The evaluation of XORS ends by scheduling W to change at some future

time. The queue is again empty so the simulation clock advances to the

4 g .J‘QL M

only remaining event, and the new value for W is applied. This node has

no fanout to any other modules so no modules are scheduled for evalua-

‘aa e 4..‘!1

tion. The event queue and the evaluation queue are now empty so simula-

tion activity is ready to terminate.

The final task remaining is to check the fault list attached to the

"JJ!LAA-

primary output against the list of potentially absorbed faults to see

which faults were propagated by alternate paths. Faults which appear in

both lists are removed from the list of potentially absorbed faults

$: since they are proven to be observable, and the remaining 1list 1is

reported as absorbed faults. In this example the list of absorbed 1

s faults is

e LI L e .
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[(XOR1,A0,FINV1)] at XOR4
[ (XOR4 ,FNANDO)] at XORS

This information about absorbed faults is useful to a circuit or test

designer since it indicates that the primary input was sufficient to

activate these faults, but that they are not observable because propaga- ,.-'j> o
. g
tion was blocked at the listed locations. o
.
®
§,1.2. Fast Multiplier Example
The following example is a 24 bit by 24 bit fast multiplier® which J
produces a 48 bit result. This size is appropriate for mantissa multi- - ’—i{
plication of 32 bit floating point numbers. This design trades space
for speed and is quite large; approximately 3 mm by 3 mm, and represents
about 30,000 active devices. For simplicity there are no propagate, @
. generate carry signals or carry lookahead. This does not change the
b S
I functionality, but it does change the speed of the multiplier. The ]
! salient features of the design which produce its speed are that a number 01
of 1independent partial products are generated in parallel and then
summed in parallel via several stages of highly vertical adders, with )
P
. very few carries between adders. o
' The two 24 bit inputs are divided into 4 bit nibbles, and each com-
bination of nibbles is used to generate one of the 36 partial products. . "'. ]
' °
. These partial products are summed in three stages of adders; the first ]
two stages are highly vertical, while the last stage is more horizontal. ‘
' 1
. 4
@ . o
Portions of this example were provided by the General Electric Cor- 1
porate Research Center.
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The vertical adders are characterized as such because they sum a colvmn

of five, 2 bit wide numbers. The horizontal adders sum two, U4 bit wide

numbers. One of the horizontal types of adders also accepts a carry
input. The carries which normally limit the speed of large additions
must be eventually resolved. This resolution occurs in the last stage
and requires only eight carries between adder modules. The cellular

organization of the multiplier is shown in Figure 5.

The SCALD description of this design represents five levels of
hierarchy with 21,000 interconnections and 4500 instances of primitives.
The partial SCALD description for this ecircuit is given in Appendix A.

The first level consists of calls to the four types of macromodules pre-
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viously described. These modules consist of calls to other macromo-

dules, which eventually lead to calls to the simulator primitives.

The 4 by 4 bit multiplier used to generate the partial products is
a combinational multiplier similar to that shown in Hayes [29]. The
multiplier consists of two major parts; an AND array which generates 2
bit partial products and an adder array to sum these products. See Fig-

ures 6 and 7 for more detail.

The partial products generated by these multipliers are summed in
three stages. Each stage is a mixture of three types of adders. The
first type is a vertical adder which adds five, 2 bit wide numbers. The
easiest way to think of the operation of this adder that it produces the

binary weighted sum of the two columns, or the sum of the right column

Y3 . Y2 Y1 Y0
Y3
PA4
X3Y3 X3Y2 X3Y1 X3Y0
Y2 N
PAS PAS
X2Y3 X2Y2 X2Y1 X2Y0
Y1
PA12
X1Y3 X1Y2 Y1 X1Y0
Yo
PA16
X0Y3 X0Y?2 X0Y1 X0Y0

Figure 6. AND Array for Fast Multiplier Example
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X0Y3 NC X0v3 NC ¥ovy m xovo
V| 1 L1

SA1 xty2 SA2'_X|V| 3A3 X1Y0

v/ [

SA4L™" HSASE™ dsae""
NC = NO CONNECTION

v/ T

SA7H" ~SABHS" sagh™

IV
SA SA SA
10 1 12
1 1
77 26 75 24 23 22 21 20

Figure 7. Sum Array for Fast Multiplier Example

of bits summed with the weighted sum (times 2) of the left column.
While not the largest module, the design for this module is the most
confusing. This design is shown in Figure 8. The final two modules
consist of chains of full and half adders. Their operation is obvious as.

shown in Figures 9 and 10.

A4 AJ A2 AV 84 83 82 Bt
1 i 1 |
F4 B F3f® AdFr2| HF1}®
L \FuLL Apoer
1 | ' | ‘ % HALF ADDER
F8 F7 m Fé FS
L
F10/—— F9
s3 s2 1 $0

Figure 8. 554 Adder for Fast Multiplier Example
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Using the system profiler [30] the simulator was found to spend ==~ i
T

most of its time in fault propagation and garbage collection. Although
performance of the simulator depends on ecircuit topology, input vector,

and number of faults propagated, approximate performance can be averaged

over a wide range of circuits, for many input vectors. For the multi-

o Lo
S )

plier the simulator processed the 4500 primitive calls {(one pass) in an

i( average of U5 seconds per input vector (60 seconds with profiling). The
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size of the simulation in memory which depends on these same attributes
stablized at about 1.5M bytes. The memory allocation breaks down as 88K

bytes for the simulator code, 5K bytes for the fault library, S4K bytes

for the SCALD description, and the rest 1is workspace for fault activity

and circuit evaluation.
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5. DISCUSSION AND CONCLUSIONS

The statistics presented in Chapter 4 are very encouraging for
several reasons. First, the system description can be represented in a
very compact form, and non-faulting simulation measurements show the
overhead for walking the hierarchy is insignificant compared to fault
simulation. Second, the fault library is small and the vector lookup
from the library is quite fast. The library can be kept small by care-
fully choosing its contents. The execution times represent 1-2 orders
of magnitude speed improvement over the TEGAS fault simulator for a
similar circuit. Finally, the workspace is large but quite acceptable
for a large circuit, like the Fast Multiplier example, especially since

no minimization techniques such as data packing have been applied.

Experience with the simulation system has shown several major
advantages to this approach. The compactness of the hierarchical cir-
cuit description is important during execution because it significantly
reduces the run-time memory requirements. The complete design, entry,
and debug cycle for the fast multiplier took only two days. The design
was entered in a top-down fashion. Functional descriptions were pro-
vided for each type of module and the highest level description was
debugged. Then each of the modules was defined in more detail, and
these descriptions were debugged. This define~debug cycle continued

until complete hierarchy was entered and debugged. The author found
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that the hierarchical data structures inside the simulator aided the
development of user-friendly reporting for debugging. In debugging mode
the simulator reports the position in the hierarchy by dumping the
module call stack. The simulator also reports the I/0 vector to the
current module by printing one of the string parameters to the current
evaluation. This contrasts with the complicated number-to-name and
table lookup often required to do similar reporting for flat system

descriptions.

The simulation system as presented in this thesis has been imple-
mented. This implementation was sufficient to design and test the basic
algorithm and with enhancements promises to become a complete and usable
fault simulator. During the development of this simulator the author
found that there were a few disadvantages to simulating from a purely
hierarchical data structure. Specifically, there is some information
which is unique to each instance of a module and cannot be stored in the
hierarchy. For instance, state information is necessary for each
instance of a sequential module. Since the hierarchy is unsuitable for
storing state, some other alternative structure must be us;d. The
author chose a tree data structure for this unique information because
it 1s similar to the hierarchy, and there is a convenient mapping from
one structure to the other. In this scheme the simulator can walk the
hierarchy to access invariant information, and walk the tree structure

to access unique information for each module.

%] DUPRRITIRIEDT N BRI

.. R

'—“ - v, :!L'.ﬂ - APV

UL GBI IPURICINT _ ) )

. S

Aedndnd

PPy




le

39

While state information is the most obvious use of the tree, it is
well suited to logging detected faults and removing them from further
consideration. Along with the state vector for each module, the tree
also contains a fault vector with one entry for each vector in the fault
library for that type of module. This vectér can be used to mark faults
when they are detected at the primary outputs, and remove them from
further consideration. This marking substantially improves simulator
performance by reducing the number of faults under consideration in

future vectors, which increases the effective execution speed.

This marking can also be used by the user to control which faults
are considered by the simulation. If the user is interested in the
fault coverage of a particular module or type of module but not the rest
of the circuit, then by marking the faults in these modules as
undetected and all others as detected, the simulator will inject only
these faults. The user can then develop a test set for the circuit
module by module, and prevent the simulator from considering faults in
modules that have already been analyzed. This technique 1s a manual
form of partitioning that allows the user to maintain the full capabil-
ity of the simulator while achieving much better speed by controlling

the fault injection.
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6. FUTURE WORK -

The fault simulation techniques presented in this thesis are far
from complete. The preliminary performance results indicate that these

techniques warrant further exploration. The next step should be the

implementation of tree data structures and fault removal (as faults are
detected) to increase simulator speed. Then signal state retention
should be added to the tree in preparation for sequential capability. —

Evaluation of sequential systems and nominal delays should be added by

P

implementing an event queue and activity-directed evaluation. The

implementation of these capabilities will complete the development of - :

the fault simulator and should be followed by a thorough performance

analysis.

Once this stage of development is complete, the emphasis should

shift to using this fault simulator as a host for test generation T

.

research. Current research suggests that the additional information
= ,
r‘ about a system which is available in the hierarchy can be used with i
3

heuristic algorithms and expert systems to automate test generation. As

integrated circuits get more complicated, brute force techniques for

e test generation become less feasible. Greater emphasis must be placed
on test generation systems that use intelligence and sophistication to

reduce the computational overhead and produce higher quality tests.
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APPENDIX A. SCALD SOURCE FOR THE FAST MULTIPLIER

This is the SCALD source for the fast multiplier. The 1listing
begins with the definiton of the highest level and proceeds by defining
each module in greater detail until the simulator primitives are called

at the lowest level.

MNAME=FASTMULT;

PARAMETER=L3,Ll2,L1,L0,K3,K2,K1,K0,J3,J2,J1,J0,
13,12,11,10,H3,H2,H?,H0,G3,G2,G1,G0,
F3,F2,r1,F0,E3,E2,E1,E0,D3,D2,D1,D0,
c3,c2,c1,c0,B3,B2,B1,B0,A3,A2,A1,A0,

MUT ,MUG ,MYS MUY MU3 ,Mu2 ,MSE1,MU0,M30,M38,M37,M36,
M35,M34 ,M33,M32,M31,M30,M29,M28,M27 ,M26 ,M25 ,M21,
M23,M22 ,M21,M20,M19,M18,M17 ,M16 ,M15,M14 ,M13,M12,
M11,M10,M9,M8, M7 ,M6 ,M5,Ml4 ,M3,M2 ,M1,MO,GND;
MULTHY4(LOC=F1)(A3=L3,A2=L2,A1=L1,A0=L0,B3=F3,B2=F2,B1=F1,B0=F0,
M7=NUL%000 ,M6=NUL%$001,M5=NUL%002 ,M4=NUL$003,M3=NUL%004,
M2=NUL%005,M1=NUL%006 ,M0O=NUL%007 ,GND=GND) ;
MULT44(LOC=F2)(A3=L3,A2=L2,A1=L1,A0=L0,B3=E3,B2=-E2,B1=E1,B0=E0,
MT7=NUL$008 ,M6=NUL%009,M5=NUL%$010,M4=NUL%011,M3=NUL%012,
M2=NUL%013,M1=NUL$014 ,M0=NUL%$015,GND=GND) ;
MULT44(LOC=F3)(A3=K3,A2=K2,A1=K1,A0=K0,B3=F3,B2=F2,B1=F1,B0=F0,
M7=NUL%016 ,M6=NUL%017 ,M5=NUL$018 ,M4=NUL%019,M3=NUL%020,
M2=NUL$021,M1=NUL%$022 ,M0=NUL%023,GND=GND) ;
MULT44(LOC=F4) (A3=L3,A2=L2,A1=L1,A0=L0,B3=D3,B2=D2,B1=D1,B0=D0,
M7=NUL%024 ,M6=NUL%025 ,M5=NUL%026 ,M4=NUL%027 ,M3=NUL%028,
M2=NUL%$029,M1=NUL$030,M0=NUL%031,GND=GND);

AS5U4(LOC=F37) /% 0 #/

(A3=NUL$120,A3=NUL$128,A2=NUL$ 136 ,A1=NUL% 144 ,A0=NULS 152,
BL=NUL$121,B3=NUL$ 129,B2=NUL$ 137, B1=NUL$ 145,B0=NUL% 153,
$3=NUL$284 ,S2=NUL% 285, S1=NUL$286 ,SO=NUL$287) ;

AS54(LOC=F38) /* 1 %/

(A4=NUL$122,A3=NUL% 130,A2=NUL%138,A1=NUL% 146 , A0=NUL$ 154,
B4=NUL$ 123,B3=NUL$131,B2=NUL$ 139,B1=NUL% 147,B0=NUL% 155,
S3=NUL$288,S2:=NUL$289,S1=NUL$290,S0=NUL$291) ;

ASS4(LOC=F39) /% 2 %/

(A4=NUL$12Y4,A3=NUL$132,A2=NULS 140 ,A1=NUL$ 148, A0=NUL$ 156,
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B4=NUL%125,B3=NUL% 133,B2=NUL% 141,B1=NUL$ 149,B0=NUL$157,

S3=NUL%292,S2=NUL%293,S1=NUL%294,S0=NUL%295);
ASS4(LOC=FLU0) /% 3 &/

(A4=NUL$126 ,A3=NUL$134,A2=NUL% 142,A1=NUL%150,A0=NUL% 158,

B4=NUL% 127 ,B3=NUL%135,B2=NUL% 143,B1=NUL% 151, B0=NUL% 159,

S3=NUL%$296 ,S2=NUL$297,S1=NUL$298,S0=NUL%299) ;

A22225(LOC=F61) (A3=NUL%$008,A2=NUL%$009,A1=NUL$010,A0=NUL%011,
/% x %/ B3=NUL%016,B2=NUL%$017,B1=NUL%018,B0=NUL%019,
S4=NUL%378,S3=NUL$379,S2=NUL%380,S1=NUL%381,S0=NUL$382);
A22225(L0OC=F62)(A3=NUL$039,A2=NUL%088,A1=NUL%089,A0=NUL%090,
/'ty % B3=NUL$047 ,B2=NUL3096 ,B1=NUL3097 ,BO=NUL%$098,
S4-NUL%383,S3=NUL$384,52=NUL%385,51=NUL$386,S0=NUL%387);
A22225(LOC=F63) (A3=NUL%264,A2=NUL$265,A1=NUL%266,A0=NULE267,
/% z %/ B3=NUL$272,B2=NUL$273,B1=NUL$274,B0=NUL%275,
S4=NUL%¥388,S3=NUL%389,S2=NUL%390,S1=NUL$391,S0=NUL%392);
A22235(LOC=F64) (A3=NUL$104 ,A2=NU. £105,A1=NUL% 106 ,A0=NUL% 107,
/% ®& 8/ B3-NUL$112,B2=NULS113,B1=NUL%114,B0=NUL%115,C0=NUL%099,
S4=NUL%393,S3=NUL%394,S2=NUL%395,S1=NUL%E396,S0=NULE397);
/®* npext level #/
A22225(L0C=F80) (A3=NUL%348,A2=NUL%349,A1=NUL%350,A0=NUL%351,
/% ¢ %/ B3:=NULE346,B2=NULE347,B1=NUL%352,B0=NUL%353,
S4=NUL%60,53=M5, S2=M8, S1=MT7,S0=M6) ;
A22235(LOC=F79)(A3=NUL%340,A2=NUL%341,A1=NULS342,A0=NULE 343,
/* e %/ B3z=NUL%338,B2=NUL%339,B1=NUL%¥344,B0=NULE345,C0=NULE460,
S4=NUL% 45T ,S3=NULS458,S2=NULE459,31=M11,S0=M10);
A554(LOC=F78) /% 4 %/

(A4=NUL%¥334,A3=NUL%¥336,A2=GND, A1=NUL%389,A0=GND,
B4=NUL$335,B3=NUL%$337,B2=GND,B1=NUL%390,B0=GND,
S3=NUL$453,S2=NUL§ 454 ,S1=NUL%455,S0=NULE 456 ) ;

ASSU(LOC=FTT) /% c %/

(A4=NUL$332,A3=NUL%322,A2=NUL%330,A1=GND, AO=GND,
B4=NUL%333,B3=NUL%323,B2=-NUL%331,B1=NUL%388,B0=GND,
S3=NUL$449,S2=NULS 450 ,S1=NUL$451,S0=NUL$452) ;

A22235(L0OC=F66) (A3=NULI004 ,A2=NUL$005,A1=NULE354,A0=NULE 355,

/% 1 %/ B3:-NUL$379,B2=NUL%380,B1=NUL%381,B0=NUL%¥382,C0=NUL%408,
S4=NUL%403,S3=NULS404,S2=NULS405,S1=NUL% 406 ,SO=NULS407);

A22235(LOC=F65) (A3=NUL%$000,A2=NULZ001,A1=NUL$002,A0=NUL%003,

/% 0 %/ B3=GND, B2=GND, B1=GND, BO=NUL%$378,C0=NUL$403,
S4=NUL%398,S3=NUL%399,S2=NULS400,S1=NUL$401,S0=NUL%U402);

/* final stage of adders %/

A22225(LOC=F89)(A3=GND, A2=NUL$457,A1=NUL$L458,A0=NULE 459,

/* 8 #%/ B3=NUL$455,B2=NULS456 ,B1=NUL%$391,B0=NULE392,
S4=NULF469,53=M15,52=M14,31=M13,50=M12);
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A22235(LOC=F88) (A3=NUL%u449,A2=NULE450,A1=NUL%451,A0=NULE 452,
/% 7 %/ B3z=NUL$44T,B2=NUL%$448,B1=NULS453,B0=NULE45Y,CO=NULS4L69,
S4=NUL%468,S3=M19,S52=M18,S1=M17,S0=M16) ;

A22225(LOC=F81) (A3=NUL$399,A2=-NUL$400,A1=NUL$401,A0=NULEL02,

/% 0 %/ B3=GND,B2=GND,B1=GND,BO=NULf462,
S4=NUL%U61,S3=MUT,S2=MU46,S1=M45,S0=MUL);

END;

MNAME=A22235;
PARAMETER=A3,A2,A1,40,B3,B2,B1,B0,C0,S4,S3,52,31,50;
FA(LOC=A22235_1) (A=A0,B=B0,CIN=CO,COUT=NUL%¥000,SUM=50) ;
FA(LOC=A22235_2)(A=A1,B=B1,CIN=NUL$000,COUT=NUL$001,SUM=S1);
FA(LOC=A22235_3)(A=A2,B=B2,CIN=NUL%001,COUT=NUL%002,SUM=S2);
FA(LOC=A22235_4) (A=A3,B=B3,CIN=NUL$002,COUT=S4,SUM=S3) ;

END;

MNAME=A22225;
PARAMETER=A3,A2,A1,4A0,B3,B2,B1,B0,S4,S3,S2,51,S0;
HA(LOC=A22225_1) (A=A0,B=B0,COUT=NUL%000,SUM=S0) ;
FA(LOC=422225_2)(A=A1,B=B1,CIN=NUL%000,COUT=NUL%001,SUM=51);
FA(LOC=A22225_3) (A=A2,B=B2,CIN=NUL%$001,COUT=NUL$002,SUM=S2);
FA(LOC=A22225_4) (A=A3,B=B3,CIN=NUL%002,COUT=S4,SUM=S3) ;

END;

MNAME=HA;
PARAMETER=4, B, COUT, SUM;

XOR2(LOC=HA1) (A=A, B=B, FXOR=SUM) ;
AND2(LOC=HA2) (A=A, B=B, FAND=COUT);

END;
MNAME:=FA;
PARAMETER=A,B, CIN,COUT, SUM;
XOR3(LOC=FA1)(A=A,B=B,C=CIN,FXOR=SUM);
AND2(LOC=FA2) (A=B, B=CIN, FAND=NUL%000) ;
AND2(LOC=FA3) (A=A, B=CIN,FAND=NUL%001);
AND2(LOC=FA4) (A=A, B=B, FAND=NUL%002);

L

OR3(LOC=FA5) (A=NUL$002,B=NUL%001,C=NUL%000,FOR=COUT);
END;

MNAME=A55K ;
PARAMETER=A4 ,A3,A2,A1,A0,B4,B3,B2,B1,B0,53,52,S1,50;
FA(LOC=ASS54_1) (A=B2,B=B1,CIN=BO0,

COUT=NUL$001, SUM=NUL%000) ;
HA(LOC=AS554_2) (A=BY,B=B3,

COUT=NUL$003 , SUM=NUL$002) ;
FA(LUC=A554_3) (A=zA2,B=A1,CIN=AO,
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COUT=NUL%005,SUM=NUL$004) ;
HA(LOC=AS54_4) (A=A4,B=A3,
COUT=NUL$007 , SUM=NUL$006 ) ;
HA(LOC=A554_5) (A=NUL$002,B=NUL%000,
COUT=NUL$008,SUM=S0);
FA(LOC=A55Y4_6) (A=NUL$003,B=NUL$001,CIN=NUL%008,
COUT=NUL%010,SUM=NUL$009) ;
HA(LOC=A554_T) (A=NUL%006 , B=NUL% 004,
COUT=NUL%$012,SUM=NUL%011);
FA(LOC=AS54_8) (A=NUL$007 ,B=NUL%005,CIN=NUL$012,
COUT=NUL%014,SUM=NUL%013);
HA(LOC=A554_9) (A=NUL%011,B=NUL%009,
COUT=NUL%015,SUM=S1);
FA(LOC=A554_10) (A=NUL$013,B=NUL$010,CIN=NUL%015,
COUT=NUL%016,SUM=S2);
OR2(LOC=A554_11) (A=NUL%014 ,B=NUL%016,C=S3);
END;

MNAME=PARRAY4XY;
PARAMETER=X3,X2,X1,X0,Y3,Y2,¥Y1,Y0,
X3Y3,X3Y2,X3Y1,X3Y0,X2Y3,X2Y2,X2Y1,X2Y0,
X1¥3,X1¥2,X1Y1,X1Y0,X0Y3, X0Y2,X0Y 1, X0Y0;

AND2(LOC=PA1) (A=X3,B=Y3,FAND=X3Y3);
AND2(LOC=PA2) (A=X3,B=Y2,FAND=X3Y2);
AND2(LCC=PA3) (A=X3,B=Y1,FAND=X3Y1);
AND2(LOC=PAY4 ) (A=X3,B=Y0,FAND=X3Y0);
AND2(LOC=PA5) (A=X2,B=Y3,FAND=X2Y3);
AND2(LOC=PA6) (A=X2,B=Y2,FAND=X2Y2);
- AND2(LOC=PA7) (A=X2,B=Y1,FAND=X2Y1);
ﬁi AND2(LOC=PA8) (A=X2,B=Y0,FAND=X2Y0);

: AND2(LOC=PA9) (A=X1,B=Y3,FAND=X113);
{ AND2(LOC=PA10) (A=X1,B=Y2,FAND=X1Y2);
L AND2(LOC=PA11) (A=X1,B=Y1,FAND=X1Y1);
{ AND2(LOC=PA12) (A=X1,B=Y0,FAND=X1Y0);
- AND2(LOC=PA13) (A=X0,B=Y3,FAND=X0Y3);

f AND2(LOC=PA14) (A=X0,B=Y2,FAND=X0Y2) ;
g AND2(LOC=PA15) (A=X0,B=Y1,FAND=X0Y1);
: AND2(LOC=PA16) (A=X0,B=Y0,FAND=X0YO0);
[ END;

- MNAME=SARRAY4XY ;

A PARAMETER=X3Y3,X3Y2,X3Y1,X3Y0,X2Y3,X2Y2,X2Y1,X2Y0,

e X1Y3,X1Y2,X1¥1,X1Y0,X0Y3,X0Y2,X0Y1,X0Y0,
z7,26,25,24,23,22,21,20 ,GND;

g WIRE(LOC=SA1)(A=X0Y0,B=20);

x FA(LOC=SA2) (A=X0Y1,B=GND, CIN=X1Y0, COUT=NUL$ 004 ,SUM=21) ;

| FA(LOC=SA3) (A=X0Y2,B=GND, CIN=X1Y 1, COUT=NUL$002, SUM=NUL$003) ;
g FA(LOC=SAl) (A=X0Y3,B=GND, CIN=X1Y2, COUT=NUL%000 , SUM=NUL$001) ;
FA(LOC=SAS5) (A=NUL$003 , B=NUL% 004 , CIN=X2Y0 , COUT=NUL%009, SUM=22) ;

-
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FA(LOC=SA6) (A=NUL$001,B=NUL%002,CIN=X2Y1,COUT=NUL$007 ,SUM=NUL%008) ;
FA(LOC=SAT7) (A=X1Y3,B=NUL%000, CIN=X2Y2,COUT=NUL$005,SUM=NUL$006 ) ;
FA(LOC=SA8) (A=NUL$008,B=NUL%009,CIN=X3Y0,COUT=NULE014,SUM=23);
FA(LOC=SA9) (A=NUL%006 ,B=NUL%007 ,CIN=X3Y1,COUT=NUL$012,SUM=NUL%013);
FA(LOC=SA10) (A=X2Y3,B=NUL%005,CIN=X3Y2,COUT=NUL$010,SUM=NUL%011);
FA(LOC=SA11)(A=NUL%013,B=NUL%014,CIN=GND, COUT=NUL$016 ,SUM=Z4) ;
FA(LOC=SA12)(A=NUL%011,B=NUL$012,CIN=NUL%016,COUT=NUL%015,SUM=25) ;
FA(LOC=SA13) (A=X3Y3,B=NUL%010,CIN=NUL%015,COUT=ZT,SUM=26) ;

END;

MNAME=MULTU44 ;
PARAMETER=A3,A2,A1,A0,B3,B2,B1,B0,M7,M6,M5,M4 ,M3,M2 ,M1,M0,GND;
PARRAYNXU4(LOC=M1)(X3=A3,X2=4A2,X1=A1,X0=40,Y3=B3,Y2=B2,Y1=B1,Y0=R0,
X3Y3=NUL%000,X3Y2=NUL%001,X3Y1=NUL%002,X3Y0=NUL%003,
X2Y3=NUL%$004,X2Y2=NUL%005,X2Y 1=NUL%006 ,X2Y0=NUL%007,
X1Y3=NUL%008,X1Y2=NUL%009,X1Y1=NUL%010,X1Y0=NUL%011,
X0Y3=NUL$012,X0Y2=NUL$013, X0Y1=NUL%014,X0Y0=NUL%015);
SARRAYHXU4(LOC=M2)(
X3Y3=NUL%000,X3Y2=NUL$001,X3Y1=NUL%002,X3Y0=NUL%003,
X2Y3=NUL%004,X2Y2=NUL%005,X2Y 1=NUL%0G6 ,X2Y0=NUL%007,
X1Y3=NUL%008,X1Y2=NUL2009,X1Y1=NUL%010,X1Y0=NUL%011,
X0Y3=NUL%012,X0Y2=NUL$013,X0Y1=NUL%014,X0Y0=NUL%015,
27=M7,26=M6,25=M5,Z4=M4 ,Z3=M3,22=M2,21=M1,Z0=MO,GND=GND) ;

END;
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4
APPENDIX B. FAULT LIBRARY SOURCE - J

-
This listing is the source for the fault library. All the primi- — J

tives used by the simulator must appear in this library. The fault vec-

tor entries are optional and can be removed to turn off fault simula-

tion.

PRIMITIVE=WIRE
INPUT 1 : 1=A
OUTPUT 1t : 2=B
DELAY 0

PRIMITIVE=BUF
INPUT 1 : 1=A
OUTPUT 1 : 2=FBUF

DELAY 1

FAULTLIST 2 ;

A0 ,FBUFO 1<
A1,FBUF1 0>

PRIMITIVE=INVERT
INPUT 1 ¢ 1=A
OUTPUT 1 :2=ABAR

DELAY 1

FAULTLIST 2 :
AQ,B1 1
A1,B0 0«
PRIMITIVE=XOR2

INPUT 2 : 1=4,2=B
OUTPUT 1 : 3=FXOR

DELAY 1

FAULTLIST &4
40,FXORO 10<
BO,FXORO 01<
AC,BO,FXOR1 11>
A1,B1,FXOR1 00>
PRIMITIVE=XOR3

INPUT 3 : 1=zA,2=zB,3=C -
OUTPUT 1 : 4=FXOR
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L4
DELAY 1 ®
FAULTLIST 8 : I
40 ,FXOR0 100¢< o
BO , FXORO 010< S
C0,FXOR0 001<
B0, CO,FXOR1 011> N
A0, CO,FXOR1 101> e
40,B0,FXOR1 110> 1
A0,B0,CO,FXORO 111< .
A1,B1,C1,FXOR1 000> ]
PRIMITIVE=AND2 Tl
INPUT 2 : 1=A,2=B ®
OUTPUT 1 : 3=FAND 7
DELAY 1 i
FAULTLIST 4 :
40,B0,FANDO 11<
A1,FAND1 01> o]
B1,FAND1 10> 01
FAND1 00> ;
PRIMITIVE=AND3 .
INPUT 3 : 1=A,2=B,3=C E
OUTPUT 1 : 4=FAND NS
DELAY 1 . °
FAULTLIST 7 : .
A1,FAND1 011>
B1,FAND1 101>
C1,FAND1 110>
A0,BO,CO,FANDO 111< B
» FAND1-1 027> .
‘ FAND1-2 202> R
FAND1-3 220> -
PRIMITIVE=ANDY S
INPUT 8 : 1=4,2=2B,3=zC,4=D B
OUTPUT 1 : 5=FAND -
DELAY 1
FAULTLIST 9 :
A1,FAND1 0111> T
: B1,FAND1 1011> R
- C1,FAND1 1101> ' :
D1,FAND1 1110¢< . @
A0,B0,C0,DO,FANDO 1111< _
FAND1-1 027?> _
FAND1-2 202?> ]
FAND1-3 2702> R
i. FAND1-4 2220> .j
]
i e
oo 0 s oot _— - w
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PRIMITIVE=ANDS -
INPUT 5 : 1=A,2=B,3=C,4=D,5=E

OUTPUT 1 : 6=FAND

DELAY 1

FAULTLIST 11

A1,FAND1 01111>

B1,FAND1 10111> o
C1,FAND1 11011> .
D1,FAND1 11101>

E1,FAND1 111105 -~
A0,BO,CO,DO,EO0,FANDO 11111< T
FAND1-1 02222>

FAND1.-2 ?02??2?>

FAND1-3 2720?72>

FAND1-4 2?2020

FAND1-5 ?27770>

PRIMITIVE=NAND2 -—
INPUT 2 : 1=A,2=B

OUTPUT 1 : 3=FNAND

DELAY 1

FAULTLIST 4 :

A0 ,BO,FNAND1 11>

A1,FNANDO 01<

B1,FNANDO 10<

A1,B1,FNANDO oo«

T

'.'.gL.._'.'

PRIMITIVE=NAND3
INPUT 3 : 1=A,2=B,3=C

OUTPUT 1 : 4=FNAND

DELAY 1 -
FAULTLIST 8 : :
g 40,B0,CO,FNAND1 111>

A1,FNANDO 011<

L" B1,FNANDO 101<

e

NRIRIS? |, J R

C1,FNANDO 110<
A1,B1,C1,FNANDO 000<
FANDO-1 0?27¢<
. FANDO-2 20%<
= FANDO-3 220<

e d SR

4 PRIMITIVE=NAND4

INPUT 4 : 1=A,2=B,3=C,4=D

OUTPUT 1 : S=E

DELAY 1

FAULTLIST 10 :

A0,B0,C0,DO,FNAND1 111>

q A1,FNANDO 0111<
B1,FNANDO 1011«

e AW L,

-
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C1,FNANDO 1101<
D1,FNANDO 1110<
A1,B1,C1,D1,FNANDO 0000<
FNANDO-1 0?27?22<
FNANDO-2 ?207%<
FNANDO-3 ?202<
FNANDO-4 ?2220<
PRIMITIVE=0R2

INPUT 2 : 1=4,2=B

CUTPUT 1 : 3=C
DELAY 1
FAULTLIST 4 :
A1,B1,C1 00>

A0, CO 10<
BO,CO 01<
Co 11<€
PRIMITIVE=0OR3

INPUT 3 : 1=4,2=B,3=C
OUTPUT 1 : 4=FOR

DELAY 1
FAULTLIST 6 :
A1,B1,C1,FOR1
A0 ,FORO
BO,FORO

€0, FORO

FORO

FORO

PRIMITIVE=NOR2

000>
100<
010¢<
001<
110<

111<

INPUT 2 : 1=A,2=B
OUTPUT 1 : 3=FNOR

DELAY 1
FAULTLIST 4 :
A1,B1,FNORO
BO,FNOR1

A0, FNOR1
FNOR1

PRIMITIVE=NOR3

00«
01>
10>
11>

INPUT 3 : 1=4,2=B,3=C
OUTPUT 1 : U=FNOR

DELAY 1
FAULTLIST 7 :
A1,B1,C1,FNORO
AQ,FNOR1

B0, FNOR1
C0,FNOR1

000<
100>
010>
001>
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:: FNOR1-1 122> o A
X FNOR1=2 217>
: FNOR1-3 221>
PRIMITIVE=NORY
INPUT 4 : 1=A,2=B,3=C,4=D
OUTPUT 1 : 5=FNOR -
DELAY 1
FAULTLIST 9 :
A1,B1,C1,D1,FNORO 0000<
AC,FNOR1 1000> S
BO,FNOR1 0100> -
CQ,FNOR1 0010>
DO, FNOR1 0001>
FNOR1-1 12722>
FNOR1-2 212%>
FNOR1-3 212> :
FNOR1-4 2?2710 —
PRIMITIVE=MULT4Y
INPUT 8 : 1=A3,2=A2,3=A1,4=A0,5=B3,6=B2,7=B1 ,8=B0
OUTPUT 8 : 9=M7,10=M6,11=M5,12=M4,13=M3, 14=M2,15=M1,16=M0
DELAY 1 . ,
PRIMITIVE=A55)4
INPUT 10 : 1=A4,2=A3,3=A2,4=A1,5=40,6=B4,7=B3,8=B2,9=B1,10=B0
QUTPUT 4 : 11=S3,12=82,13=51,14=S0
DELAY 1
PRIMITIVE=422225
INPUT 8 : 1=A3,2=A2,3=A1,4=A0,5=B3,6=B2,7=B1,8=B0 ~
OUTPUT 5 : 9=S4,10=S3,11=82,12=81,13=S0 -
DELAY 1 .
PRIMITIVE=A22235 o
INPUT 9 : 1=zA3,2=A2,3=A1,4=A0,5=B3,6=B2,7=B1,8=B0,9=C0
: OUTPUT 5 : 10=S4,11=83,12=52,13=81,14=S0 B
. DELAY 1
. END -
4
]
}
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APPENDIX C. SAMPLE MAIN PROGRAM

This is a sample main program to illustrate how the simulator is
called. The simulator is designed as a set of callable subroutines,
some routines which perform IO are optional. The simulator was designed
this way to allow the user to code special purpose main programs to suit
the IO needs for each system to be simulated. The main program can be
coded to interactively interrogate the user for input and simulator
options in a form suitable to the user, and then restructure the data in
the form the simulator expects. This design also allows the simulator
to be called from other programs such as test pattern generator? or

other simulators.

#include <stdio.h>
#include-"../1ib/struct.h" /% simulator type definitions %/
#include "../lib/mainglobals.h" /# global variable declarations %/

main() {
int initsim(), setobserve(), evaluate(), displaylists();
int i, length, level, modtype, activity;
char inlinel[2561;
struct sigvector vector;

/% This routine reads the fault library and system descriptions L7
/% then links the two with the functional procedures. ®/
initsim();

/% This routine interrogates for the pin numbers the user wishes &/
/% to observe fault behavior. It flags these pins so the &/

/% displaylists routine will output faults propagated to these pins. ¥/
/* This routine is optional vectorflags is used only by displaylists %/
setobserve(vectorflags);

while (1) { /* interactive IO routine %/
for (1=0; 1<=MAXSIGS; i++) { /®* 1Init the signal vector %/
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vector.value[i]=NULL; é:
vector.faultlist[1]=NULL; -
}
fprintf(stderr,"0lease input a vector: ");
if ((length = getline(inline,MAXSIGS)) == 0) break;
for (i=1; i<=length; i++) vector.value[i] = inline[i-1];

level = 0; /® flag the outer level for evaluate ¥/ -
modtype = 2; /% the outer level must be a scald module L7
/% call to the evaluator, level and modtype should be 0,2 #/
/% vector contains the input vector, activity is unused &/
/* scaldroot is a pointer set by the initialization */

evaluate(scaldroot,&vector,modtype,level,&activity); -

/% This routine processes faults attached to the output vector #/

/% Only the pins flagged in vectorflags are considered. &/

/* The reporting is done in terms of the system hierarchy. 74

displaylists(&vector,vectorflags); -
} —
fprintf(stderr, "Good-Bye...0);

}




oy
' %

(11

(2]

(3]

(4]

[5]

(6]

[7]

[8]

(9]

(10]

(1]

[12]

(13]

‘M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of

REFERENCES ~ el

T. W. Williams and K. P. Parker, "Design for Testability - A Sur- -
vey," Proceedings of the IEEE, vol. 7%, pp. 98-112, January 1983. q

M. Feuer, "VLSI Design Automation: An Introduction,®™ Proceedings
of the IEEE, vol. 71, pp. 5-9, January 1983.

A. R. Newton, "Techniques for the Simulation of Large-Scale In-

tegrated Circuits,"™ IEEE Iransactions on Circuits apd Systems, L
vol. CAS-26, pp. T41-T49, September 1979.

V. D. Agrawal, A. K. Bose, P. Kozak, H. N. Nham, and E. Pacas-
Skewes, ™A Mixed-Mode Simulator," IEEE Design Automation Confer-
ence, pp. 618-625, 1980.

C. H. Sequin, "Managing VLSI Complexity: An Outlook," Proceedings _,
of the IEEE, vol. 71, pp. 149-166, January 1983.

A. Yamada, N. Wakatsuki, and S. Funatsu, "Designing Digital Cir-
cuits with Easily Testable Consideration," IEEE Test Conference,
pp. 98-102, November 1978.

P. S. Bottorff, R. E. France, N. H. Garges, and E. J. Orosz, "Test o
Generation for Large Logic Networks," J1EEE Design Automation
Conference, pp. 479-485, June 1977.

Digital Systems. Woodland Hills, California: Computer Science
Press, 1976.

D. B. Armstrong, "A Deductive Method for Simulating Faults in Log- -
ic Circuits," IEEE ITransactions on Computers, vol. C-21, pp. T
464-471, May 1972.

E. G. Ulrich and T. Baker, "Concurrent Simulation of Nearly Ident-
ical Digital Networks," Computer, vol. T, pp. 39-44, April 1974,

H. Y. Chang, S. G. Chappell, C. H. Elmendorf, and L. D. Schmidt,
"Comparison of Parallel and Deductive Fault Simulation Methods,"
JEEE Iransactions on Computers, vol. C-23, pp. 1132-1138, No- A
vember 1974, '.‘f.'::"
M. Abramovici, "A Hierarchical, Path-Oriented Approach to Fault S
Diagnosis in Modular Combinational Circuits,™ IEEE Transactions on ®
Computera, vol. C-31, pp. 672-677, July 1982. )

M. R. Genesereth, "Diagnosis Using Hierarchical Design Models,"
HPP-81-20, Stanford University, Stanford, California, 1981.



Il - ST

G T M i DA RO wRW TR T T T T e e W T e T T

3
;L‘
a
g

54

[14] B. T. Preas and C. W. Gwyn, "General Hierarchical Automatic Lay-
out of Custom VLSI Circuit Masks," Design Automation & Fault-
Jolerant Computing, vol. 3, pp. 41-48, 1979.

[15] C. Niessen, "Hierarchical Design Methodologies and Tools for VLSI
Chips," Proceedings of the IEEE, vol. 71, pp. 66-75, January

1983.
[16] P. N. Yianilos, "A Dedicated Comparator Matches Symccl Strings R
Fast and Intelligently," Electronics, vol. 56, pp. ' 1-1'7, De= ‘ 1

cember 1983.

[17] N. Giambiasi, A. Miara, and D. Muriach, "Methods For fereralized -
Deductive Fault Simulation," IEEE Design Automation Corference, A .
pp. 386-393, 1980.

{18] Y. H. Levendel and P. R. Menon, "Fault-Simulation Methods - Exten-
sions and Comparison," Bell System Technical Journal, vol. 60,
pp. 2235-2259, November 1981.

{19] E. Ulrich, D. Lacy, N. Phillips, J. Tellier, M. Kearney, T. Elk-
ind, and R. Beaven, "High~Speed Concurrent Fault Simulation with
Vectors and Scalars," IEEE Design Automation Conference, pp.
374-380, 1980.

[20] M. E. Lesk and E. Schmidt, "Lex -~ A Lexical Analyzer Generator," - =
in UNIX Praogrammer's Mapual. Murray Hill, New Jersey: Bell La- °
boratories, 1979. ’ .

(21] S. C. Johnson, "Yacc: Yet Another Compiler-Compiler," in UNIX
Programmer's Manual. Murray Hill, New Jersey: Bell Laboratories,
1979.

(22] J. D. Lesser and J. J. Shedletsky, "An Experimental Delay Test
Generator for LSI Logic," IEEE Transactions on Computers, vol. C- ‘
29, pp. 235-248, March 1980. -]

[23] V. V. Nickel, "VLSI - The Inadequacy of the Stuck-At Fault Model,"
IEEE Test Conferepce, pp. 378-381, 1980 .

[24] C. Liaw, S. Y. H. Su, and Y. K. Malaiya, "Test Generation for De-

lay Faults Using Stuck-At-Fault Test Set," IEEE Test Conference,
pp. 167-175, 1980.

P

A, SR

] S

;
[25] D. R. Schertz and G. Metze, "A New Representation for Faults in A
Combinational Digital Circuits,"™ IEEE Transactions on Computers, ]
vol. C=21, pp. 858-866, August 1972. ®
[26] E. J. McCluskey and F. W. Clegg, "Fault Equivalence in Combina- f-
tional Logic Networks," IEEE Iransactiops on Computers, vol. C-20,
pp. 1286-1293, November 1971. k
[27] T. M. McWilliams, J. B. Rubin, L. C. Widdoes, and S. Correl, SCALD S
M II User's Manual. Lawrence Livermore Laboratory, 1979, Annual Re- »

{ port, The S-1 Project.




PR M Ml M e PR Rt A “Bilie SR A N RACRCH N M "M NS L A i i L A SV Sl A S th A tal el il Sl Sl Al At Al At St Sl

55

'! (28] B. Salefski, "D," Masters Thesis, University of Illinois, Urbana-
: Champaign, 1981.

(29] J. P. Hayes, Computer Architecture and Organization. New York, N.
Y.: McGraw-Hill, 1978, pp. 180-190.

[30] UNIX Programmers Manpual. Murray Hill, New Jersey: Bell Labora-
- tories, 1980.

L vevm ace R i L
SIS T e e T L T

et m s * . e - P .. e “ LTI SR et ATt T e e - P . e . .

L PV R PR PR S R AT SRS WU e NP W W TN TN PR N U o . . o " DI, WA Ay, W —




_‘1“Tvv:""-;*\x‘\‘. L
. S - PR - _‘~ - P g < * ) -

TR, - -

T T T ST

il

END

. )W

¥
Y

FILMED

3-85 .

C N
I | -
-
.
-
.......... ) RSP . R . e e - B
: o L L et PR
. R K P, - Seamdin Sonchdvmstndn
- PPN e L
PR TS e Sttt




